DFOR 761-001: Malware Reverse Engineering

Digital Forensics and Cyber Analysis Program Department of Electrical and Computer Engineering George Mason University Spring 2025

Instructor

Parnian Najafi

Email: pnajafib@gmu.edu Telephone:

469.394.2410

Office Hours: Schedule by email over Zoom

Location: Virtually Online

Location and Time

Nguyen Engineering Building 4457 Tuesdays, 7:20-10:00PM

Course Description

The Digital Forensics Graduate course in Malware Reverse Engineering is designed for students with limited or no prior experience in the practice of reverse engineering. The course will focus on reviewing disassembled code of potentially malicious binaries, typically using disassemblers or hex editors, to gain a deeper understanding of how the binary functions when executed. Students will learn to analyze the behavioral aspects of malicious binaries as they are executed in a controlled environment, including changes to the file system, network, processes, and communication with remote devices. The course will emphasize extracting actionable information from malware, including analyzing its interactions with networks, identifying targeted information, and identifying commonalities with previously analyzed malware. The course will also cover identifying and analyzing vulnerabilities exploited by malware as potential infection vectors.

Prerequisites

<u>DFOR 510</u> - Digital Forensics Analysis and <u>DFOR 660</u> - Network Forensics, a working knowledge of computer programming, and a familiarity with Assembly Language is preferred.

Course Objectives

The objective of this course is to familiarize students with the practice of reverse engineering suspicious files by utilizing static, dynamic, and reversing tactics, techniques, and procedures in order to gain an understanding as to what impact the suspicious file may have on a particular computer system when executed.

Grading

Raw scores may be adjusted to calculate final grades. Grades will be assessed by the following components:

Class Participation: 5% Homework: 25% Midterm: 30% Final Project: 40%

The components are outlined in the following sections.

Homework

Three homework labs will be provided to students over the course to allow students to apply the methods discussed in class. These assignments will be provided in class and announced via the course website. Homework assignments are due two weeks following the assigned date. Homework assignments are worth twenty-five percent (25%) of your overall grade. Late homework assignments will be assessed a penalty of twenty-five (25%) of the assignment grade for each day of tardiness. No homework will be accepted after the third day.

Midterm

A midterm exam will be given during week 7 and will cover information provided during lectures, labs, required and supplemental readings, and any information derived from homework assignments.

Final Project

The capstone of the class will consist of an analytic paper of at least seven pages in length detailing your analysis on a piece of malware demonstrating the analytic fundamentals learned in the course. The final report is due in week 14 of the class.

Software Requirements

All students will need the ability to virtualize the Windows operating systems. While VMWare is preferred, other software such as VirtualBox, Qemu, Parallels, and Microsoft Virtual PC are also sufficient. Students will be provided a copy of Windows that will be used via virtualization for the execution and detonation of malware samples. All other software discussed in the course can be downloaded from the Internet and is either freeware, shareware, or available as trial software. All additional software requirements will be discussed in the lecture material.

Textbooks

The following books are a requirement for this course.

REQUIRED

Learning Malware Analysis: Explore the concepts, tools, and techniques to analyze and investigate Windows malware

Paperback: 510 pages

Publisher: Packt Publishing (June 29, 2018)

ISBN-10: 1788392507

ISBN-13: 978-1788392501

RECOMMENDED

Practical Malware Analysis

Publisher: No Starch Press; 1 edition (February 1, 2012) Language:

English

ISBN-10: 1593272901

ISBN-13: 978-1593272906

These books provide students with a basic primer on reverse engineering to include computer internals, operating systems, and assembly language. In addition, they also provide students with practical, in-depth techniques for software reverse engineering utilizing reverse engineering tools.

Additional course material will be given to students via lecture. Recommended reading will be discussed during lecture. Students are encouraged to review recommended reading as needed.

Schedule

Date	Week	Topic
21 Jan	1	Course and Syllabus Overview, Introduction to Malware, Analysis
28 Jan	2	Initial Infection Vectors, Malware Discovery, and Static Analysis
4 Feb	3	Sandboxing Malware and Gathering Information through Static and Dynamic Analysis
11 Feb	4	Introduction to the Portable Executable File Format
18 Feb	5	Identifying Executable Metadata and Executable Packers
25 Feb	6	Assembly Language Primer
4 Mar	7	Midterm Examination
11 Mar	8	Spring Break(No Class)
18 Mar	9	Introduction to Disassemblers
25 Mar	9	Utilizing Software Debuggers to Examine Malware
1 Apr	10	Malware Self-Defense, Compression, and Obfuscation Techniques
8 Apr	11	Memory Dumping and Forensics
15 Apr	12	Analyzing Malicious Microsoft Office and Adobe PDF Documents, Advanced Infection Techniques
22 Apr	13	Automating Malware Analysis
29 Apr	14	Final Projects are Due (NO CLASS)

This schedule is subject to revision before and during this course.

Call 703-993-1000 for recorded information on campus delays or closings (e.g. due to weather).

Attendance Policy

http://catalog.gmu.edu/content.php?catoid=15&navoid=1168#attendance

Students who miss an exam with an acceptable excuse may be penalized according to the individual instructor's grading policy, as stated in the course syllabus. Absences from final exams will not be excused except for sickness on the day of the exam or other cause approved by the student's academic dean or director. The effect of an unexcused absence from an undergraduate final exam shall be determined by the weighted value of the exam as stated in the course syllabus provided by the instructor. If absence from a graduate final exam is unexcused, the grade for the course is entered as F. See the Additional Grade Notations in the Grading System section for information on being absent with permission.

Communications

Communication on issues relating to the individual student should be conducted using email or telephone. Email is the preferred method – for urgent messages, you should also attempt to contact the Instructor via telephone. Email messages from the Instructor to all class members will be sent to students' GMU email addresses – if you use another email account as your

primary address, you should forward your GMU email to that account.

Lecture slides are complements to the lecture process, not substitutes for it. Access to lecture

slides will be provided as a courtesy to students provided acceptable attendance is maintained.

Academic Standards

Academic Standards exist to promote authentic scholarship, support the institution's goal of maintaining high standards of academic excellence, and encourage continued ethical behavior of faculty and students to cultivate an educational community which values integrity and produces graduates who carry this commitment forward into professional practice. As members of the George Mason University community, we are committed to fostering an environment of trust, respect, and scholarly excellence. Our academic standards are the foundation of this commitment, guiding our behavior and interactions within this academic community. The practices for implementing these standards adapt to modern practices, disciplinary contexts, and technological advancements. Our standards are embodied in our courses, policies, and scholarship, and are upheld in the following principles:

- **Honesty**: Providing accurate information in all academic endeavors, including communications, assignments, and examinations.
- **Acknowledgement**: Giving proper credit for all contributions to one's work. This involves the use of accurate citations and references for any ideas, words, or materials created by others in the style appropriate to the discipline. It also includes acknowledging shared authorship in group projects, coauthored pieces, and project reports.
- Uniqueness of Work: Ensuring that all submitted work is the result of one's own effort and is original, including free from self-plagiarism. This principle extends to written assignments, code, presentations, exams, and all other forms of academic work. Violations of these standards—including but not limited to plagiarism, fabrication, and cheating—are taken seriously and will be addressed in accordance with university policies. The process for reporting, investigating, and adjudicating violations is outlined in the university's procedures.

Consequences of violations may include academic sanctions, disciplinary actions, and other measures necessary to uphold the integrity of our academic community. The principles outlined in these academic standards reflect our collective commitment to upholding the highest standards of honesty, acknowledgement, and uniqueness of work. By adhering to these principles, we ensure the continued excellence and integrity of George Mason University's academic community.

Student responsibility: Students are responsible for understanding how these general expectations regarding academic standards apply to each course, assignment, or exam they participate in; students should ask their instructor for clarification on any aspect that is not clear to them.

Honor Code

http://catalog.gmu.edu/content.php?catoid=15&navoid=1039#Honor
Students are required to be familiar and comply with the requirements of the GMU Honor Code.
Students must NOT collaborate on the homework or projects without explicit prior permission from the Instructor.

Mason shares in the tradition of an honor system that has existed in Virginia since 1842. The code is an integral part of university life. On the application for admission, students sign a statement agreeing to conform to and uphold the Honor Code. Students are responsible, therefore, for

understanding the code's provisions. In the spirit of the code, a student's word is a declaration of good faith acceptable as truth in all academic matters. Cheating and attempted cheating, plagiarism, lying, and stealing of academic work and related materials constitute Honor Code violations. To maintain an academic community according to these standards, students and faculty members must report all alleged violations to the Honor Committee. Any student who has knowledge of, but does not report, a violation may be accused of lying under the Honor Code.

The complete Honor Code is as follows:

To promote a stronger sense of mutual responsibility, respect, trust, and fairness among all members of the George Mason University community and with the desire for greater academic and personal achievement, we, the student members of the university community, have set forth this honor code: Student members of the George Mason University community pledge not to cheat, plagiarize, steal, or lie in matters related to academic work.

The material provided in the course is proprietary. Uploading this material anywhere without the express permission of the instructor is strictly prohibited and a violation of the Mason Honor Code. https://oai.gmu.edu/

The Use of Generative Artificial Intelligence

Generative-AI tools, such as ChatGPT and Microsoft Co Pilot, should not be used in this course unless specified by the assignment. Use of such tools presents ethical and academic dishonesty issues, especially if the work is presented as your own. While such tools may be used to generate ideas, brainstorm, or outline larger works, the language in work you submit in this course should always be your own. Submitted work that is not your own is an Academic Integrity violation ("Providing, using, or attempting to benefit from unauthorized academic material and/or assistance"). If you do use generative AI software, you will be responsible for any incorrect, biased, or unethical information that is submitted. Finally, you must be transparent with your use even on assignments in which you are permitted to use Generative AI.

Office of Disability Services

If you are a student with disability and you need academic accommodations, please see me and contact the Office of Disability Services (ODS) at 993-2474. All academic accommodations must be arranged through the ODS.